Step of Proof: equal-bnot
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
equal-bnot
:
x
,
y
:
. (
x
= (
y
))
(
(
x
=
y
))
latex
by ((UnivCD THENA Auto)
CollapseTHEN (((AutoBoolCase
y
)
CollapseTHEN (((((
C
RWO "eqtt_to_assert" 0)
CollapseTHENA (Auto
))
)
C
CollapseTHEN (((((RWO "eqff_to_assert" 0)
CC
CollapseTHENA (Auto
))
)
C
CollapseTHEN (((((RW assert_pushdownC 0)
CollapseTHENA (Auto
))
)
Col
CollapseTHEN (Auto
))
))
))
))
))
latex
Co
1
:
Co1:
1.
x
:
Co1:
2.
y
:
Co1:
3.
(
y
)
Co1:
4.
x
Co1:
(
x
)
Co
2
:
Co2:
1.
x
:
Co2:
2.
y
:
Co2:
3.
(
y
)
Co2:
4.
(
x
)
Co2:
x
Co
.
Definitions
left
+
right
,
Unit
,
,
tt
,
ff
,
,
Type
,
p
q
,
p
q
,
p
q
,
b
,
a
<
b
,
x
f
y
,
f
(
a
)
,
a
<
b
,
null(
as
)
,
x
=a
y
,
(
i
=
j
)
,
i
z
j
,
i
<z
j
,
p
=b
q
,
x
:
A
.
B
(
x
)
,
t
T
,
s
=
t
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
P
Q
,
False
,
P
Q
,
x
:
A
B
(
x
)
,
Void
,
A
,
,
b
Lemmas
iff
transitivity
,
btrue
wf
,
bfalse
wf
,
eqtt
to
assert
,
bool
wf
,
eqff
to
assert
,
bnot
wf
,
iff
functionality
wrt
iff
,
iff
wf
,
rev
implies
wf
,
not
functionality
wrt
iff
,
assert
of
bnot
,
not
wf
,
assert
wf
origin